Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Viruses ; 16(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38543796

RESUMO

Porcine epidemic diarrhea virus (PEDV) has affected the pork industry worldwide and during outbreaks the mortality of piglets has reached 100%. Lipid nanocarriers are commonly used in the development of immunostimulatory particles due to their biocompatibility and slow-release delivery properties. In this study, we developed a lipid nanoparticle (LNP) complex based on glycyrrhizinic acid (GA) and tested its efficacy as an adjuvant in mice immunized with the recombinant N-terminal domain (NTD) of porcine epidemic diarrhea virus (PEDV) spike (S) protein (rNTD-S). The dispersion stability analysis (Z-potential -27.6 mV) confirmed the size and charge stability of the LNP-GA, demonstrating that the particles were homogeneously dispersed and strongly anionic, which favors nanoparticles binding with the rNTD-S protein, which showed a slightly positive charge (2.11 mV) by in silico analysis. TEM image of LNP-GA revealed nanostructures with a spherical-bilayer lipid vesicle (~100 nm). The immunogenicity of the LNP-GA-rNTD-S complex induced an efficient humoral response 14 days after the first immunization (p < 0.05) as well as an influence on the cellular immune response by decreasing serum TNF-α and IL-1ß concentrations, which was associated with an anti-inflammatory effect.


Assuntos
Infecções por Coronavirus , Lipossomos , Nanopartículas , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Vacinas Virais , Animais , Suínos , Camundongos , Anticorpos Antivirais , Vírus da Diarreia Epidêmica Suína/genética , Ácido Glicirrízico/farmacologia , Glicoproteína da Espícula de Coronavírus , Adjuvantes Imunológicos , Imunidade , Proteínas Recombinantes , Lipídeos
2.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38399437

RESUMO

Previous studies provided evidence of the benefits of omega-3 polyunsaturated fatty acids (ω-3 PUFA) on the cardiovascular system and inflammation. However, its possible effect on skeletal muscle is unknown. This study aimed to evaluate whether ω-3 PUFA reverses the dysregulation of metabolic modulators in the skeletal muscle of rats on a high-fat obesogenic diet. For this purpose, an animal model was developed using male Wistar rats with a high-fat diet (HFD) and subsequently supplemented with ω-3 PUFA. Insulin resistance was assessed, and gene and protein expression of metabolism modulators in skeletal muscle was also calculated using PCR-RT and Western blot. Our results confirmed that in HFD rats, zoometric parameters and insulin resistance were increased compared to SD rats. Furthermore, we demonstrate reduced gene and protein expression of peroxisome proliferator-activated receptors (PPARs) and insulin signaling molecules. After ω-3 PUFA supplementation, we observed that glucose (24.34%), triglycerides (35.78%), and HOMA-IR (40.10%) were reduced, and QUICKI (12.16%) increased compared to HFD rats. Furthermore, in skeletal muscle, we detected increased gene and protein expression of PPAR-α, PPAR-γ, insulin receptor (INSR), insulin receptor substrate 1 (ISR-1), phosphatidylinositol-3-kinase (PI3K), and glucose transporter 4 (GLUT-4). These findings suggest that ω-3 PUFAs decrease insulin resistance of obese skeletal muscle.

3.
Metab Syndr Relat Disord ; 21(2): 101-108, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36399542

RESUMO

Background: Perivascular adipose tissue (PVAT) plays an essential role in cardiovascular homeostasis. However, during obesity and diabetes, its role in vascular tone regulation is unclear. This study aimed to evaluate the function of the PVAT on aorta reactivity in the lean and cafeteria (CAF) diet-induced obese-hyperglycemic mice model. Methods: Aorta reactivity to phenylephrine, KCl, and acetylcholine was analyzed in lean (n = 6) and obese mice (n = 6). Also, nitric oxide (NO-) and cyclooxygenase participation, in the presence (n = 6) and absence (n = 6) of PVAT, were examined in the aortas. Results: After a CAF diet for 19 weeks, obese mice showed increased body weight, glucose intolerance, and hypercholesterolemia concerning lean mice. Vascular reactivity to phenylephrine was reduced significantly in the aorta of obese mice. In contrast, the contraction produced by KCl (80 mM) was increased in the aorta of obese mice independent of PVAT. Acetylcholine-induced vasorelaxation diminished in the aortas of obese mice in the presence of PVAT. Nonselective inhibition of cyclooxygenases likely shows that PVAT and endothelium release vasorelaxant prostanoids. Conclusions: The results suggest that PVAT modulates aorta reactivity by releasing NO-, decreasing the α1-adrenergic response to phenylephrine, and probably releasing vasorelaxant prostanoids. The data suggest that PVAT regulates the vascular smooth muscle and endothelial function in a CAF diet-induced obese-hyperglycemic mice model.


Assuntos
Acetilcolina , Tecido Adiposo , Camundongos , Animais , Camundongos Obesos , Acetilcolina/farmacologia , Obesidade , Aorta , Vasodilatadores , Fenilefrina/farmacologia
4.
Phytomedicine ; 89: 153622, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34161895

RESUMO

BACKGROUND: Type 2 Diabetes (T2D) is characterized by deregulation in carbohydrate and lipid metabolism, with a very high mortality rate. Glucose Transporter type 4 (GLUT4) plays a crucial role in T2D and represents a therapeutic target of interest. Tillandsia usneoides (T. usneoides) is a plant used as a remedy for diabetes. T. usneoides decreased blood glucose in different experimental models. However, the involvement of GLUT4 in this effect has not yet been explored. PURPOSE: This study aimed to investigate whether any component in T. usneoides might participate in the effect on blood glucose through a bioassay-guided fractionation, testing its potential antihyperglycemic effect in mice, as well as its influence on GLUT4 translocation in C2C12 myoblasts and primary hepatocytes. METHODS: The aqueous extract and the Ethyl Acetate fraction (TU-AcOEt) of T. usneoides were evaluated in a hypoglycemic activity bioassay and in the glucose tolerance test in CD-1 mice. TU-AcOEt was fractionated, obtaining five fractions that were studied in an additional glucose tolerance test. C1F3 was fractioned again, and its fractions (C2F9-12, C2F22-25, and C2F38-44) were examined by HPLC. The C2F38-44 fraction was analyzed by Mass Spectrometry (MS) and subjected to additional fractionation. The fraction C3F6-9 was explored by Nuclear Magnetic Resonance (NMR), resulting in 5,7,4´-trihydroxy-3,6,3´,5´-tetramethoxyflavone (Flav1). Subsequently, a viability test was performed to evaluate the cytotoxic effect of Flav1 and fractions C2F9-12, C2F22-25. C2F38-44, and C3F30-41 in C2C12 myoblasts and primary mouse hepatocytes. Confocal microscopy was also performed to assess the effect of Flav1 and fractions on GLUT4 translocation. RESULTS: The TU-AcOEt fraction exhibited a hypoglycemic and antihyperglycemic effect in mice, and its fractionation resulted in five fractions, among which fraction C1F3 decreased blood glucose. MS and NMR analysis revealed the presence of Flav1. Finally, Flav1 significantly promoted the translocation of GLUT4 in C2C12 myoblasts and primary hepatocytes. CONCLUSION: To date, Flav1 has not been reported to have activity in GLUT4; this study provides evidence that T. usneoides is a plant with the potential to develop novel therapeutic agents for the control of T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Flavonas , Transportador de Glucose Tipo 4/metabolismo , Hepatócitos/efeitos dos fármacos , Hipoglicemiantes , Mioblastos/efeitos dos fármacos , Animais , Linhagem Celular , Diabetes Mellitus Tipo 2/tratamento farmacológico , Flavonas/farmacologia , Hipoglicemiantes/farmacologia , Camundongos , Compostos Fitoquímicos/farmacologia , Tillandsia/química
5.
Inflamm Res ; 70(5): 605-618, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33877377

RESUMO

OBJECTIVE: To determine the involvement of TNF-α and glycine receptors in the inhibition of pro-inflammatory adipokines in 3T3-L1 cells. METHODS: RT-PCR evidenced glycine receptors in 3T3-L1 adipocytes. 3T3-L1 cells were transfected with siRNA for the glycine (Glrb) and TNF1a (Tnfrsf1a) receptors and confirmed by confocal microscopy. Transfected cells were treated with glycine (10 mM). The expressions of TNF-α and IL-6 mRNA were measured by qRT-PCR, while concentrations were quantified by ELISA. RESULTS: Glycine decreased the expression and concentration of TNF-α and IL-6; this effect did not occur in the absence of TNF-α receptor due to siRNA. In contrast, glycine produced only slight changes in the expression of TNF-α and IL-6 in the absence of the glycine receptor due to siRNA. A docking analysis confirmed the possibility of binding glycine to the TNF-α1a receptor. CONCLUSION: These findings support the idea that glycine could partially inhibit the binding of TNF-α to its receptor and provide clues about the mechanisms by which glycine inhibits the secretion of pro-inflammatory adipokines in adipocytes through the TNF-α receptor.


Assuntos
Adipócitos/metabolismo , Citocinas/metabolismo , Glicina/farmacologia , Receptores Tipo II do Fator de Necrose Tumoral/antagonistas & inibidores , Receptores Tipo I de Fatores de Necrose Tumoral/antagonistas & inibidores , Células 3T3-L1 , Adiponectina/genética , Animais , Citocinas/genética , Expressão Gênica , Camundongos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Receptores de Glicina/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/genética
6.
J Sci Food Agric ; 100(14): 5171-5181, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32530046

RESUMO

BACKGROUND: The fruit of Cucurbita ficifolia Bouché is known in Mexico as 'chilacayote'. The scientific interest that C. ficifolia Bouché has acquired is due to its important hypoglycemic effect. The present research aimed (i) to discover whether this hypoglycemic property is present at different stages of development of this fruit, and (ii) to characterize some bioactive compounds with antioxidant or anti-inflammatory properties. Ethylene production, respiration rate, and maturity indices were determined during fruit development. The chemical characterization of the aqueous extracts of each stage of maturity studied was determined and their hypoglycemic effects were bioassayed using groups of normal mice with diabetes induced by streptozotocin at a dose of 500 mg-1 kg-1 body weight. RESULTS: Respiration rate and ethylene production showed a typical pattern for non-climacteric fruit and the quality parameters did not show significant changes. Phenolic compounds such as gallic acid and chlorogenic acid were found to have the highest concentration at 15 days of development. Extracts at 15 days showed a hypoglycemic effect that was 11% greater than that of glibenclamide in diabetized mice. CONCLUSION: All stages of development of C. ficifolia fruit had a hypoglycemic effect; however, the aqueous extract from the fruit at 15 days of development showed a better effect than glibenclamide. This finding highlights the potential of this maturity stage, and shows that it is appropriate for inclusion in treatments of type 2 diabetes mellitus. The results also indicate that phenolic compounds are mainly responsible for this effect and not d-chiro-inositol as previously thought. © 2020 Society of Chemical Industry.


Assuntos
Cucurbita/crescimento & desenvolvimento , Diabetes Mellitus Tipo 2/tratamento farmacológico , Frutas/química , Hipoglicemiantes/administração & dosagem , Extratos Vegetais/administração & dosagem , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/análise , Anti-Inflamatórios/metabolismo , Antioxidantes/administração & dosagem , Antioxidantes/análise , Antioxidantes/metabolismo , Glicemia/metabolismo , Cucurbita/química , Cucurbita/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Humanos , Hipoglicemiantes/análise , Hipoglicemiantes/metabolismo , Masculino , Camundongos , Fenóis/administração & dosagem , Fenóis/análise , Fenóis/metabolismo , Fitoterapia , Extratos Vegetais/análise , Extratos Vegetais/metabolismo
7.
J Med Food ; 23(7): 783-792, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31721634

RESUMO

In Central and South American traditional medicine, people use Cecropia obtusifolia Bertol (Cecropiaceae) for the treatment of diabetes mellitus. However, its hypoglycemic action mechanism at pancreatic and liver level has been poorly explored. The present research aimed to establish the influence of the aqueous extract of C. obtusifolia, standardized in its content of chlorogenic acid, on insulin secretion in RINm5F cells and over the liver carbohydrates and lipids metabolism, and to determine concomitantly its hepatoprotective effect on mice with streptozotocin-induced diabetes. In RINm5F cells, concentrations 5, 50, 100, and 200 µg/mL of aqueous extract of C. obtusifolia were used to determine [Ca2+]i and insulin secretion. In an acute study, the extract was administered at doses of 500 mg/kg. In another test (subacute), the extract was daily administrated to diabetic mice (200 mg/kg/day) for 30 days. Blood glucose levels and other biochemical parameters were determined, and a liver histological analysis was performed. In RINm5F cells, C. obtusifolia increased [Ca2+]i and insulin secretion, whereas in diabetic mice exhibited acute and subacute hypoglycemic effects. Daily administration of C. obtusifolia to diabetic mice also increased liver glycogen storage and glycogen synthase levels, without apparent changes in gluconeogenesis. Besides, it increased peroxisome proliferator-activated receptor-α (PPAR-α) and long-chain-fatty-acid-CoA ligase 1 (ACSL-1) expression and reduced triglycerides, transaminases (alanine aminotransferase and aspartate aminotransferase), and collagen fibers, modifying anti-inflammatory (adiponectin and interleukin-10) and inflammatory (tumor necrosis factor-α) cytokines in serum. Therefore, the hypoglycemic effect of C. obtusifolia implicates a dual action, promoting insulin secretion, liver glycogen accumulation, and hepatoprotection by decreasing collagen fibers and inflammatory markers, whereas it improves lipid metabolism, due in part to PPAR-α.


Assuntos
Cecropia (Planta)/química , Diabetes Mellitus Experimental , Hipoglicemiantes/uso terapêutico , Extratos Vegetais/uso terapêutico , Animais , Glicemia , Diabetes Mellitus Experimental/tratamento farmacológico , Fígado/efeitos dos fármacos , Camundongos , Fitoterapia , Substâncias Protetoras/uso terapêutico
8.
Bol. latinoam. Caribe plantas med. aromát ; 18(3): 239-264, mayo 2019. tab, ilus
Artigo em Inglês | LILACS | ID: biblio-1007935

RESUMO

Tillandsia L. genus comprises 649 species, with different uses at different times. T. usneoides L. uses are reported since the late- archaic and pre-Columbian cultures. In XIX-XX centuries, T. usneoides was used in some manufactured products, as polish and packing fruit. Tillandsia has a favorable reputation as medicine: for leucorrhea, rheumatism, ulcers, hemorrhoid treatment, as an anti-diabetic remedy, emetic, analgesic, purgative, contraceptive, antispasmodic and diuretic. Tillandsia chemical composition includes cycloartane triterpenes and hydroxy-flavonoids, which are present in at least 24 species. Several extracts and compounds from Tillandsia spp. have been reported with pharmacological actions, as anti-neoplasia, hypolipidemic, antifungal, anti-HSV-1, hypoglycemic and microbicide. This review communicates the economic importance, ethnobotany, chemistry composition and biological activities of the Tillandsia genus, and analyze its biological and economic perspective. Tillandsia genus has cultural, economic and pharmacological relevance, with a high potential in many essential aspects of the modern society.


El género Tillandsia L. comprende 649 especies, con diferentes usos en diferentes épocas. T. usneoides L. se han reportado desde el arcáico tardío hasta las culturas precolombinas. En los siglos XIX-XX, T. usneoides se usó en productos manufacturados: como abrasivo y embalaje de fruta. Como medicina tradicional, el género Tillandsia se reporta para leucorrea, reumatismo, úlceras, hemorroides, remedio antidiabético, emético, analgésico, purgante, anticonceptivo, antiespasmódico y diurético. Su composición química incluye triterpenos de tipo ciclo-artano e hidroxi-flavonoides, presentes en al menos 24 especies. Los extractos y compuestos del género Tillandsia se han reportado con propiedades antineoplásicas, hipolipidémicas, antifúngicas, anti-HSV-1, hipoglucemiantes y microbicidas. Esta revisión comunica la importancia económica, etnobotánica, composición química y las actividades biológicas del género Tillandsia, y analiza su perspectiva biológica y potencial económica. Tillandsia tiene importancia cultural, económica y farmacológica, con gran potencial en muchos aspectos esenciales de la sociedad moderna.


Assuntos
Plantas Medicinais/química , Extratos Vegetais/química , Etnobotânica , Tillandsia/química , Triterpenos/análise , Extratos Vegetais/farmacologia , Bromeliaceae/química
9.
Biomed Pharmacother ; 102: 120-131, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29550635

RESUMO

Glycine modulates inflammatory processes mediated by macrophages and adipocytes through decreasing the secretion of TNF-α, IL-6, and leptin, while increasing adiponectin. These effects have been associated with the inactivation of NF-κB in response to TNF-α, across an increase of its inhibitor IκB-α in adipocytes. However, glycine upstream mainly influences the IκB kinase (IKK) complex, a multi-protein kinase complex considered a critical point in regulation of the NF-κB pathway; whether that is responsible for the TNF-α-induced phosphorylation of IkB has not been explored. Additionally, although previous studies have described glycine interactions with specific receptors (GlyR) in different immune system cell types, it is currently unknown whether adipocytes present GlyR. In this research, participation of the IKK-α/ß complex in the inhibition of the TNF-α/NF-κB pathway by glycine was evaluated and associated with the synthesis and secretion of inflammatory cytokines in 3T3-L1 adipocytes. Furthermore, we also explored GlyR expression, its localization on the plasmatic membrane, intracellular calcium concentrations [Ca2+]i and strychnine antagonist action over the GlyR in these cells. Glycine decreased the IKK-α/ß complex and the phosphorylation of NF-κB, diminishing the expression and secretion of IL-6 and TNF-α, but increasing that of adiponectin. GlyR expression and its fluorescence in the plasma membrane were increased in the presence of glycine. In addition, glycine decreased [Ca2+]i; whereas strychnine + glycine treatment inhibited the activation of NF-κB observed with glycine. In conclusion, the reduction of TNF-α and IL-6 and suppression of the TNF-α/NF-κB pathway by glycine may be explained in part by inhibition of the IKK-α/ß complex, with a possible participation of GlyR in 3T3-L1 adipocytes.


Assuntos
Adipócitos/metabolismo , Glicina/metabolismo , Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Células 3T3-L1 , Animais , Cálcio/metabolismo , Citocinas/biossíntese , Citocinas/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Fosforilação , Receptores de Glicina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
J Ethnopharmacol ; 188: 159-66, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27174079

RESUMO

ETHNOPHARMACOLOGICAL IMPORTANCE: Cucurbita ficifolia Bouché(C. ficifolia) is a plant used in Mexican traditional medicine to control type 2 diabetes (T2D). The hypoglycemic effect of the fruit of C. ficifolia has been demonstrated in different experimental models and in T2D patients. It has been proposed that D-chiro-inositol (DCI) is the active compound of the fruit. Additionally, it has been reported that C. ficifolia increases the mRNA expression of insulin and Kir 6.2 (a component of the ATP-sensitive potassium (K(+)ATP) channel, which is activated by sulphonylurea) in RINm5F cells. However, it remains unclear whether C. ficifolia and DCI causes the secretion of insulin by increasing the concentration of intracellular calcium ([Ca(2+)]i) through K(+)ATP channel blockage or from the reservoir in the endoplasmic reticulum (ER). MATERIAL AND METHODS: The aqueous extract of C. ficifolia was obtained and standardized with regard to its DCI content. RINm5F pancreatic ß-cells were incubated with different concentrations (50, 100, 200 and 400µM) of DCI alone or C. ficifolia (9, 18, 36 and 72µg of extract/mL), and the [Ca(2+)]i of the cells was quantified. The cells were preloaded with the Ca(2+) fluorescent dye fluo4-acetoxymethyl ester (AM) and visualized by confocal microscopy. Insulin secretion was measured by an ELISA method. Subsequently, the effect of C. ficifolia on the K(+)ATP channel was evaluated. In this case, the blocker activator diazoxide was used to inhibit the C. ficifolia-induced calcium influx. In addition, the inositol 1,4,5-trisphosphate (IP3)-receptor-selective inhibitor 2-amino-thoxydiphenylborate (2-APB) was used to inhibit the influx of calcium from the ER that was induced by C. ficifolia. RESULTS: It was found that DCI alone did not increase [Ca(2+)]i or insulin secretion. In contrast, treatment with C. ficifolia increased [Ca(2+)]i 10-fold compared with the control group. Insulin secretion increased by 46.9%. In the presence of diazoxide, C. ficifolia decreased [Ca(2+)]i by 50%, while insulin secretion increased by 36.4%. In contrast, in the presence of 2-APB, C. ficifolia increased [Ca(2+)]i 18-fold, while insulin secretion remained constant, indicating an additive effect. Therefore, C. ficifolia was not found to block the K(+)ATP channel. However, it did exert an effect by increasing [Ca(2+)]i from the ER, which may partly explain the insulin secretion observed following treatment with C. ficifolia. CONCLUSIONS: The hypoglycemic properties of C. ficifolia can be explained in part by its effect as a secretagogue for insulin through an increase in [Ca(2+)]i from the calcium reservoir in the ER. Therefore, the mechanism of action of C. ficifolia is different to those of the currently used hypoglycemic drugs, such as sulfonylureas. These results support that C. ficifolia may be a potential natural resource for new agents to control T2D.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Cucurbita/química , Retículo Endoplasmático/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Extratos Vegetais/farmacologia , Compostos de Boro/farmacologia , Linhagem Celular Tumoral , Diazóxido/farmacologia , Relação Dose-Resposta a Droga , Retículo Endoplasmático/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Hipoglicemiantes/isolamento & purificação , Inositol/isolamento & purificação , Inositol/farmacologia , Receptores de Inositol 1,4,5-Trifosfato/efeitos dos fármacos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Canais KATP/efeitos dos fármacos , Canais KATP/metabolismo , Microscopia Confocal , Fitoterapia , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Bloqueadores dos Canais de Potássio/farmacologia
11.
Nutrients ; 6(2): 591-604, 2014 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-24481132

RESUMO

Psacalium decompositum, commonly known as "Matarique," is a medicinal plant used in Mexico for diabetes mellitus empirical therapy. Previous studies have shown that the fructooligosaccharides (FOS) present in the roots of this plant exhibit a notable hypoglycemic effect in animal models; this effect might be associated with the attenuation of the inflammatory process and other metabolic disorders. In this study, we examined the effects of FOS fraction administration in a fructose-fed rat model for obesity. Phytochemical chromatographic studies (high performance thin layer chromatography and nuclear magnetic resonance) were performed to verify isolation of FOS. 24 male Wistar rats were maintained for 12 weeks on a diet of 20% HFCS in drinking water and chow. Glucose, cholesterol, triglycerides and liver transaminases levels were measured monthly, after administering FOS fraction intragastrically (150 mg/kg/day for 12 weeks), while the levels of inflammatory cytokines were only quantified at the end of the treatments. Rats treated with FOS fraction decreased body weight, cholesterol, triglycerides, and significantly reduced IL-6, IFN-γ, MCP-1, IL-1ß and VEGF levels (p < 0.05). These results suggest that P. decompositum has anti-inflammatory and hypolipidemic properties that might be used as an alternative treatment for the control of obesity.


Assuntos
Asteraceae/química , Dislipidemias/tratamento farmacológico , Frutose/efeitos adversos , Inflamação/tratamento farmacológico , Obesidade/tratamento farmacológico , Oligossacarídeos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Peso Corporal , Quimiocina CCL2/sangue , Colesterol/sangue , Modelos Animais de Doenças , Hipoglicemiantes/farmacologia , Interferon gama/sangue , Interleucina-1beta/sangue , Interleucina-6/sangue , Masculino , Obesidade/induzido quimicamente , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Plantas Medicinais/química , Ratos , Ratos Wistar , Triglicerídeos/sangue , Fator A de Crescimento do Endotélio Vascular/sangue
12.
Eur J Pharmacol ; 689(1-3): 270-7, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22732655

RESUMO

Glycine strongly reduces the serum levels of pro-inflammatory cytokines and increases the levels of anti-inflammatory cytokines. Recently, glycine has been shown to decrease the expression and secretion of pro-inflammatory adipokines in monosodium glutamate-induced obese (MSG/Ob) mice. It has been postulated that these effects may be explained by a reduction in nuclear factor kappa B (NF-κB) activation. NF-κB is a transcription factor, which is crucial to the inflammatory response. Hasegawa et al. (2011 and 2012) recently reported a glycine-dependent reduction in NF-κB levels. Here, we have investigated the role of glycine in the regulation of NF-κB in differentiated 3T3-L1 adipocytes. The results revealed that pretreatment with glycine interfered with the activation of NF-κB, which has been shown to be stimulated by tumor necrosis factor-alpha (TNF-α). Glycine alone stimulated NF-κB activation in an unusual way such that the inhibitor κB-ß (IκB-ß) degradation was more significant than that of the inhibitor κB-α (IκB-α) and led to NF-κB complexes comprised of p50 and p65 subunits; IκB-ε degradation did not affect by glycine. These findings suggest that glycine could be used as an alternative treatment for chronic inflammation, which is a hallmark of obesity and other comorbidities, and is characterized by an elevated production of pro-inflammatory cytokines.


Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Diferenciação Celular/fisiologia , Glicina/farmacologia , NF-kappa B/antagonistas & inibidores , Fator de Necrose Tumoral alfa/biossíntese , Células 3T3-L1 , Adipócitos/citologia , Animais , Diferenciação Celular/efeitos dos fármacos , Camundongos , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores
13.
Basic Clin Pharmacol Toxicol ; 108(6): 406-13, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21205225

RESUMO

The monosodium glutamate (MSG) neonatal administration in mice provides a model of obesity with impaired glucose tolerance (IGT) and insulin resistance. However, the inflammatory profile of cytokines produced from fat tissue and its relationship to the metabolic dysfunction induced by MSG have not yet been revealed. The aim of this study was to establish the inflammatory profile attributed to MSG by measuring the expression of adipokines in visceral fat and serum of 19-week-old mice as well as the peroxisome proliferator-activated receptors alpha and gamma (PPARα and γ). Some metabolic and biochemical parameters were also quantified. The MSG increased mRNA expression of interleukin-6 (IL-6), tumour necrosis factor-alpha (TNFα), resistin and leptin, but adiponectin did not exhibit any changes. In addition, impaired glucose tolerance, increased levels of insulin, resistin and leptin were observed in serum. Both PPARα and PPARγ were activated in MSG-induced obese mice, which might explain its inflammatory profile. However, liver transaminases were severely depressed, indicating that MSG may also induce liver injury, contributing to inflammation. The MSG neonatal neuro-intoxication in mice may thus provide a model of obesity and inflammation characterized by the dual activation of PPARα and PPARγ, which might offer new insights into the mechanism of inflammatory diabetes in obesity leading to steatohepatitis, as well as a suitable model to study the role of new therapeutic agents to prevent or reduce insulin resistance, the inflammatory state and liver steatosis.


Assuntos
Aditivos Alimentares/toxicidade , Inflamação/metabolismo , Obesidade/induzido quimicamente , Obesidade/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/genética , Glutamato de Sódio/toxicidade , Adiponectina/sangue , Tecido Adiposo/fisiopatologia , Envelhecimento/patologia , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Fígado Gorduroso/complicações , Feminino , Aditivos Alimentares/metabolismo , Inflamação/sangue , Inflamação/complicações , Insulina/sangue , Resistência à Insulina/fisiologia , Gordura Intra-Abdominal/fisiopatologia , Masculino , Camundongos , Camundongos Obesos , Obesidade/complicações , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , RNA Mensageiro/metabolismo , Glutamato de Sódio/metabolismo
14.
Bol. méd. Hosp. Infant. Méx ; 67(2): 88-97, March.-Apr. 2010. ilus, tab
Artigo em Espanhol | LILACS | ID: lil-701008

RESUMO

La obesidad es un problema muy importante a nivel mundial que ha aumentado rápidamente, alcanzando características de pandemia. En los últimos años se ha observado que los pacientes obesos presentan un estado inflamatorio crónico de bajo grado como una consecuencia del incremento en la masa del tejido adiposo, que lleva a un aumento en la producción de mediadores proinflamatorios que son conjuntamente estimulados por señales de origen exógeno y/o endógeno. El tejido adiposo contiene fibroblastos, preadipocitos, adipocitos y macrófagos; estos últimos contribuyen de manera importante al proceso inflamatorio sistémico con la producción de mediadores proinflamatorios. Así, existe una asociación íntima, altamente coordinada, entre las vías inflamatorias y las metabólicas; destaca la coincidencia en las funciones de los macrófagos y los adipocitos en la obesidad. Dilucidar los vínculos que existen entre obesidad e inflamación es de importancia capital dentro del campo de la biología molecular; esto implica el reconocimiento de las adipocinas, moléculas sintetizadas por los adipocitos, para dar lugar al descubrimiento de nuevos blancos terapéuticos relacionados con la inmunidad y el metabolismo, y de esta manera abrir la posibilidad de frenar la evolución de los procesos inflamatorios que culminan en enfermedades degenerativas.


Obesity is a major problem worldwide whose prevalence is increasing rapidly, with characteristics of a pandemic. In recent years it has become clear that obese patients present a low-grade chronic inflammation as a result of increased fat tissue and, consequently, an increased production of proinflammatory mediators by exogenous or endogenous stimuli. Fat tissue contains fibroblasts, preadipocytes, adipocytes and macrophag-es with the latter contributing to the systemic inflammatory process in the production of proinflammatory mediators. Thus, there is a highly coordinated intimate association between inflammatory and metabolic pathways, highlighting the overlap between the functions of macrophages and adipocytes in obesity. Elucidating the links between obesity and inflammation is of primordial importance within the field of molecular biology of obesity, which implies the recognition of adipokines, molecules synthesized by adipocytes, which may lead to the discovery of new therapeutic targets related to metabolism and immunity. This may open the possibility to halt the development of inflammatory processes leading to degenerative diseases.

15.
Gac Med Mex ; 144(6): 535-42, 2008.
Artigo em Espanhol | MEDLINE | ID: mdl-19112726

RESUMO

The number of patients with metabolic disorders, obesity, type 2 diabetes and hypertension is increasing worldwide. The increase in body weight as a consequence of genetic, environmental, and nutritional factors contributes to these disorders, playing a significant role in their disease course. In 1994 the obesity gene (ob) which encodes a protein named leptin, considered an important molecule in regulation of body weight, was described Body weight gain has been generally correlated with high plasma levels of leptin, generating a state of leptin-resistance. Because of its association with obesity, leptin has also been connected with type 2 diabetes and insulin-resistance, an essential characteristic of this disease. Leptin has also been linked with other disorders such as dyslipidaemia, and cardiovascular disease (conditions that together are known as metabolic syndrome), as well as cancer, psychological deficits, sexual dysfunction, etc. We describe some important biochemical and molecular aspects associated with the physiology of leptin, emphasizing the pathological consequences associated with obesity and diabetes.


Assuntos
Diabetes Mellitus Tipo 2/etiologia , Leptina/fisiologia , Obesidade/etiologia , Animais , Modelos Animais de Doenças , Humanos , Leptina/metabolismo
16.
Gac. méd. Méx ; 144(6): 535-542, nov.-dic. 2008. ilus, tab
Artigo em Espanhol | LILACS | ID: lil-567767

RESUMO

En los últimos años, el número de pacientes con alteraciones metabólicas, tales como obesidad, diabetes mellitus tipo 2, hipertensión, etcétera, se ha incrementado. El aumento en el peso corporal, resultante de los factores genéticos, ambientales y nutricionales, tiene un papel muy importante en el desarrollo de diversas alteraciones metabólicas. En 1994 se describió al gen de la obesidad (ob) que codifica para la proteína leptina, molécula importante en la regulación del peso corporal. La ganancia en el peso normalmente correlaciona con un incremento de la proteína leptina, generándose a largo plazo un estado de resistencia a la misma. Además de esta relación con la obesidad, la leptina también se ha asociado con la diabetes mellitus tipo 2 y con la resistencia a la insulina, característica principal de esta patología. La leptina también se ha relacionado con otras enfermedades tales como cáncer, trastornos psicológicos y sexuales, entre otros. En este trabajo se analizan algunos aspectos bioquímicos y moleculares relacionados con la fisiología de la leptina; se hace énfasis en las consecuencias patológicas que causan su desregulación en la obesidad y la diabetes mellitus tipo 2.


The number of patients with metabolic disorders, obesity, type 2 diabetes and hypertension is increasing worldwide. The increase in body weight as a consequence of genetic, environmental, and nutritional factors contributes to these disorders, playing a significant role in their disease course. In 1994 the obesity gene (ob) which encodes a protein named leptin, considered an important molecule in regulation of body weight, was described Body weight gain has been generally correlated with high plasma levels of leptin, generating a state of leptin-resistance. Because of its association with obesity, leptin has also been connected with type 2 diabetes and insulin-resistance, an essential characteristic of this disease. Leptin has also been linked with other disorders such as dyslipidaemia, and cardiovascular disease (conditions that together are known as metabolic syndrome), as well as cancer, psychological deficits, sexual dysfunction, etc. We describe some important biochemical and molecular aspects associated with the physiology of leptin, emphasizing the pathological consequences associated with obesity and diabetes.


Assuntos
Humanos , Animais , /etiologia , Leptina/fisiologia , Obesidade/etiologia , Modelos Animais de Doenças , Leptina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...